Cambridge IGCSE[™](9–1) | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | # * 4 7 1 4 4 4 0 4 4 #### **CO-ORDINATED SCIENCES** 0973/41 Paper 4 Theory (Extended) May/June 2022 2 hours You must answer on the question paper. No additional materials are needed. #### **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do not use an erasable pen or correction fluid. - Do not write on any bar codes. - You may use a calculator. - You should show all your working and use appropriate units. #### **INFORMATION** - The total mark for this paper is 120. - The number of marks for each question or part question is shown in brackets []. - The Periodic Table is printed in the question paper. 1 (a) Fig. 1.1 shows some specialised cells. | | Fig. 1.1 | | |-------|--|---------| | (i) | Identify the names of the cells labelled B and E in Fig. 1.1. | | | | В | | | | E | | | | | [2] | | (ii) | Explain how the structure of cell A is related to its function. | | | | | | | | | | | | | [2] | | (iii) | Describe two ways in which cell D is adapted for transporting oxygen. | | | . , | 1 | | | | | | | | 2 | [2] | | Cel | D is one of the main components of blood. | | | Sta | te two other main components of blood. | | | | | | | | | | | 2 | |
[2] | © UCLES 2022 0973/41/M/J/22 (b) | (c) | Blo | od vessels are adapted to their function. | |-----|-------|---| | | (i) | Explain why arteries have a thick elastic wall. | | | | | | | | [1] | | | (ii) | Explain why veins have valves. | | | | | | | | [1] | | | (iii) | Explain why capillaries have very thin walls. | | | | | | | | [1] | | | | [Total: 11] | - **2** Ethene is a member of a family of hydrocarbons. - Fig. 2.1 shows an ethene molecule. Fig. 2.1 | | (i) | State what is meant by a polymer. | | |-----|-----|---|-----| | | Pol | y(ethene) is a polymer. | | | (c) | Pol | y(ethene) can be made from ethene. | | | | | | [1] | | | Sta | te the name of this process. | | | (b) | Eth | ene is made from the larger molecules in petroleum. | | | | | | [1] | | (a) | Sta | te the family of hydrocarbons that ethene is a member of. | | (ii) Table 2.1 shows some information about polymers. Complete Table 2.1. Table 2.1 | molecule used to make polymer | name of polymer | repeat unit of polymer | |-------------------------------|-------------------------|---------------------------------------| | H C=C H | poly(ethene) | H H H H H H H H H H H H H H H H H H H | | | poly(chloroethene) | Cl H | | FC=CF | poly(tetrafluoroethene) | | [2] (d) Ethene can be made into ethane. State the **formula** of the substance that ethene reacts with to make ethane.[1] **(e)** Ethane is a saturated hydrocarbon. Describe what is meant by a **saturated** hydrocarbon. (f) Ethene undergoes an addition reaction with bromine. Fig. 2.2 shows the equation for the reaction. Complete the equation in Fig. 2.2 by drawing the structure of the compound formed. [Total: 9] [1] 7 # **BLANK PAGE** **3** Fig. 3.1 shows a forklift truck lifting a crate. Fig. 3.1 - (a) The crate has a mass of 140 kg. - (i) Calculate the weight of the crate. The gravitational field strength, g, is 10 N/kg. (ii) Calculate the work done on the crate when it is lifted through a height of 1.5 m. State the unit for your answer. **(b)** The forklift truck uses an electric motor to lift the crate. Fig. 3.2 shows the circuit that includes the electric motor. Fig. 3.2 The voltmeter displays a reading of 0.50 V. (i) Show that the potential difference (p.d.) across the motor is 11.5 V. [1] (ii) The current in the circuit is 9.20A. Calculate the resistance of the motor. resistance = $$\Omega$$ [2] [Total: 7] 4 (a) Tay-Sachs disease is a genetic disorder that destroys nerve cells in the brain and spinal cord. The allele for Tay-Sachs disease is recessive t. The allele for unaffected by Tay-Sachs disease is dominant **T**. Fig. 4.1 is a pedigree diagram showing the inheritance of Tay-Sachs disease. Fig. 4.1 | (i) | State the number of males in Fig. 4.1 that are unaffected by Tay-Sachs disease. | | |-------|--|-----| | | | [1] | | (ii) | Complete the sentences to explain the genotypes of some of the people in Fig. 4.1. | | | | Person E and person F are by Tay-Sachs disease. | | | | Person E and person F both have the genotype | | | | Person G has Tay-Sachs disease. They have the genotype | | | | Person G will have inherited one allele from each parent. | [4] | | (iii) | State the probability of two parents with the genotypes TT having a child with Tay-Sad disease. | chs | | | | [1] | | (b) | Growth | of | offspring | involves | mitosis. | |-----|--------|----|-----------|----------|----------| |-----|--------|----|-----------|----------|----------| (c) (d) The box on the left contains the term mitosis. The boxes on the right contain some sentence endings. Draw **three** lines from the word mitosis to the boxes on the right to make **three** correct sentences about mitosis. | | occurs after exact duplication of chromosomes. | | |--------------------------------|--|-------| | | is involved in the production of gametes. | | | | is reduction division. | | | Mitosis | produces cells with diploid nuclei. | | | | produces nuclei with paired chromosomes. | | | | produces genetically different cells. | | | | | [3] | | State the number of chromos | omes in a human diploid cell. | | | | | [1] | | State the term given to a char | nge in a gene or chromosome. | | | | | [1] | | | [Total: | : 11] | 5 In an experiment, a student adds an alkali to an acid. Fig. 5.1 shows the experiment. Fig. 5.1 | (a | The student slow | |----|------------------| |----|------------------| | (i) | Describe how the pH of the acid changes as the alkali is added. | | |-------|--|-----| | | | [1] | | (ii) | Complete the word equation to show the type of substance made in the reaction. | | | | acid + alkali → + water | [1] | | (iii) | Sulfuric acid, H ₂ SO ₄ , is an acid. | | | | Potassium hydroxide, KOH, is an alkali. | | | | Construct the balanced symbol equation for the reaction of sulfuric acid with potassi hydroxide. | ium | | | | | (iv) State the formula of the ion which is present in solutions of all acids.[1] | (b) | Amı | monium sulfate, $(NH_4)_2SO_4$, is made by reacting an acid with an alkali. | | | | | | | |-----|---|--|--|--|--|--|--|--| | | Cal | culate the relative formula mass, $M_{\rm r}$, of ammonium sulfate. | | | | | | | | | [<i>A</i> _r : | H, 1; N, 14; O, 16; S, 32] | relative formula mass =[1] | | | | | | | | (c) | The | alkali used to make ammonium sulfate is ammonia, NH ₃ . | | | | | | | | | Ammonia is made by the Haber process. | | | | | | | | | | Nitrogen, N ₂ , and hydrogen, H ₂ , are the starting materials. | | | | | | | | | | Look at the equation for the reaction. | | | | | | | | | | | $N_2 + 3H_2 \rightleftharpoons 2NH_3$ | | | | | | | | | (i) | Describe the Haber process. | | | | | | | | | | You should include: | | | | | | | | | | the sources of nitrogen and hydrogen gas the conditions used. | [3] | | | | | | | | | | | | | | | | | | (ii) | Ammonia, | NH_3 | reacts | with | nitric | acid, | HNO_3 | |------|----------|--------|--------|------|--------|-------|---------| |------|----------|--------|--------|------|--------|-------|---------| Ammonium nitrate, $\mathrm{NH_4NO_3}$, is made. Look at the equation for the reaction. $$NH_3 + HNO_3 \rightarrow NH_4NO_3$$ Calculate the mass of ammonium nitrate made from 51 kg of ammonia. Show your working. [A_r: H, 1; N, 14; O, 16] mass = kg [2] [Total: 11] 15 # **BLANK PAGE** **6** Fig. 6.1 shows a tidal power station which uses tidal energy to generate electricity. The moving water turns a turbine which is connected to a generator. Fig. 6.1 | (a) | (i) | State the source of the energy for the tides. | |-----|-----|---| |-----|-----|---|[1] (ii) Each kilogram of water has 1.62 J of kinetic energy. Calculate the speed of the water flow. (b) Fig. 6.2 shows a simple a.c. generator. Fig. 6.2 - (i) On Fig. 6.2, draw an arrow to show the direction of the magnetic field between the permanent magnets. [1] - (ii) State the name of the components labelled **X** and describe their use. | name |
 |
 | | |------|------|------|-----| | | | | | | use |
 |
 | | | | | | | | |
 | | | | | | | [2] | (iii) On Fig. 6.3, sketch a graph of voltage output against time for a simple a.c. generator operating at a constant speed. Fig. 6.3 [2] | (c) | The tidal power station uses a warning lamp to warn passing boats of its location. | |-----|--| | | The lamp emits light with a wavelength of 4.0×10^{-7} m. | Calculate the frequency of the light. frequency = Hz [3] [Total: 11] 19 # **BLANK PAGE** [Total: 8] **7 (a)** Fig. 7.1 is a photograph of a wind-pollinated flower. Fig. 7.1 | | Identify part A in Fig. 7.1. | | |-----|---|---------| | | | [1] | | (b) | Describe one way the pollen and petals of insect-pollinated flowers are different from with pollinated flowers. | nd- | | | pollen | | | | petals |
[2] | | , , | | [4] | | (c) | State where fertilisation occurs in a plant. | | | | | [1] | | (d) | Many plants are able to reproduce sexually and asexually. | | | | Describe the disadvantages to a plant in the wild of reproducing asexually. | | | | | | | | | | | | | [2] | | (e) | State two requirements for germination of plant seeds. | | | (-) | 1 | | | | | | | | 2 |
[2] | | | | | # **BLANK PAGE** **8** Table 8.1 gives some information about atoms. Table 8.1 | atom | proton number | nucleon number | electronic structure | |-----------|---------------|----------------|----------------------| | sodium | 11 | 23 | 2.8.1 | | fluorine | 9 | 19 | 2.7 | | chlorine | 17 | 35 | 2.8.7 | | chlorine | 17 | 37 | 2.8.7 | | argon | | 40 | 2.8.8 | | magnesium | 12 | 24 | | | (a) | Con | nplete Table 8.1. | [2] | |-----|------|---|-----| | (b) | Chlo | orine appears twice in Table 8.1. | | | | Eac | h of the atoms is an isotope of chlorine. | | | | (i) | Explain what is meant by the word isotope. | | | | | | | | | | | | | | | | [2] | | | (ii) | The two isotopes of chlorine have the same chemical properties. | | | | | Explain why. | | | | | | | | | | | [1] | | (c) | Arg | on is a noble gas. | | | | Ехр | lain why argon is very unreactive. | | | | Use | e ideas about electronic structure. | | | | | | | | | | | | | (d) | Sodium is a metal. | | |-----|--|-----| | | Describe the bonding in a metal. | | | | You may draw a diagram to help your answer. | ••• | | | | | | | | [2] | | (e) | Magnesium chloride contains the ions Mg^{2+} and Cl^{-} . | | | | Determine the formula of magnesium chloride. | | | | | | | | | | | | formula = | [1] | | (f) | Fluorine, F ₂ , reacts with sodium chloride, NaC <i>l</i> . | | | | Construct the balanced symbol equation for the reaction. | | | | | [2] | | | [Total: 1 | 11] | **9** A student investigates the motion of smoke particles in air using a microscope. The student shines a bright light on a transparent box containing a mixture of smoke and air and observes the smoke particles as bright dots of light. (a) The student observes that the smoke particles move in straight lines between random changes of direction. Fig. 9.1 shows the observed path of one smoke particle. Fig. 9.1 The motion shown in Fig. 9.1 is known as Brownian motion. | • | |---| | Describe what causes the motion of the smoke particles shown in Fig. 9.1. | | | | | | | | [2] | (b) The microscope uses a filament lamp to illuminate the smoke particles. Fig. 9.2 shows how current varies with potential difference (p.d.) for the filament lamp. Fig. 9.2 | Use the shape of the graph in Fig. 9.2 to describe and explain what happens to the resistance of the filament lamp as the potential difference is increased. | |---| | | | | | | | | | וא | 26 (c) The microscope uses a thin converging lens to produce an image. Fig. 9.3 shows a thin converging lens. Fig. 9.3 (i) Draw a ray diagram on Fig. 9.3 to show the formation of a real image. Label the image with the word image. [3] PMT (ii) Fig. 9.4 shows a single ray of light entering a thin glass block. Fig. 9.4 Calculate the refractive index of the thin glass block. refractive index = [2] [Total: 10] - 10 The control of blood glucose concentration is an involuntary action by the body. - (a) Place ticks (\checkmark) in the boxes to show **two** other involuntary actions. | coughing | | |----------|--| | cycling | | | reading | | | sneezing | | | talking | | [2] **(b)** State the characteristic of living things that is defined as the ability to respond to a stimulus.[1] (c) Fig. 10.1 is a graph that shows the blood glucose concentration after eating a meal. Fig. 10.1 (i) Calculate the length of time it takes for the blood glucose concentration to return to its starting concentration from its maximum. minutes [1] (ii) Explain the results between **20–30 minutes** in Fig. 10.1. _____[3 | | (iii) State | the type of response s | hown by the cont | rol of blood glucose | concentration. | | |-----|-------------|------------------------|--------------------|----------------------|----------------|-----| | | | | | | | [1] | | (d) | State the | names of two hormone | s that can increas | se the blood glucose | concentration. | | | | 1 | | | | | | | | 2 | | | | | | | | | | | | | [2] | | | | | | | [Total: | 10 | **11** A student investigates indigestion tablets. Indigestion tablets neutralise acids. The student measures 50 cm³ of dilute hydrochloric acid into a beaker. He adds an indigestion tablet to the acid. Fig. 11.1 shows the student's experiment. Fig. 11.1 The student measures the time the tablet takes to react completely. He repeats the experiment but makes one change each time. (a) The volume of acid does not affect the rate of reaction. Table 11.1 shows his results. **Table 11.1** | experiment | volume of acid/cm ³ | concentration of acid | temperature of acid/°C | time for tablet to react/s | |------------|--------------------------------|-----------------------|------------------------|----------------------------| | 1 | 50 | dilute | 20 | 131 | | 2 | 50 | concentrated | 20 | 66 | | 3 | 100 | concentrated | 20 | 66 | | 4 | 50 | concentrated | 30 | 32 | | State which two experiments show this. | | |---|-----| | and | [1] | | (b) | Increasing the temperature of the acid affects the rate of reaction. | |-----|---| | | Increasing the concentration of the acid also affects the rate of reaction. | | | For each factor (temperature and concentration): | - describe how the rate of reaction changes - explain why the rate of reaction changes, using ideas about particles. | | temperature | |-----|---| | | how the rate of reaction changes | | | | | | because | | | | | | | | | concentration | | | how the rate of reaction changes | | | | | | because | | | | | | | | | [4] | | (c) | In experiment 1, the student uses dilute hydrochloric acid with a concentration of 0.1mol/dm^3 . | | | Calculate the concentration of the dilute hydrochloric acid in g/dm³ . | | | [A _r : H, 1; C <i>l</i> , 35.5] | | | | | | answer = g/dm ³ [1] | | (d) | The reaction between the indigestion tablet and the acid is an exothermic reaction. | | | Explain why. Use ideas about bond breaking and bond making. | | | | | | | | | | | | | | | [3] | [Total: 9] - 12 A rocket is used to launch satellites into Earth's orbit. - (a) Fig. 12.1 shows the forces acting on a rocket as it is launched. Fig. 12.1 (i) Calculate the resultant force acting on the rocket as it is launched. | | resultant force = N [1] | |-------|--| | (ii) | Describe the motion of the rocket as it is launched. | | | | | | | | | | | | [2] | | (iii) | Suggest a reason why the weight decreases as the rocket travels further away from Earth. | | | | | | [1] | **(b)** Fig. 12.2 shows a satellite in orbit around the Earth. The satellite orbits at a height of 2000 km above the surface of the Earth. The satellite takes 125 minutes to complete one orbit. The satellite travels at an average speed of 7.1 km/s. Fig. 12.2 Calculate the radius of the Earth. radius of the Earth = km [4] | (c) | When in o | orbit, sa | tellites are | subject to | ionising | radiation | coming | from | space | |-----|-----------|-----------|--------------|------------|----------|-----------|--------|------|-------| |-----|-----------|-----------|--------------|------------|----------|-----------|--------|------|-------| This radiation includes $\alpha\text{-particles},$ $\beta\text{-particles}$ and $\gamma\text{-rays}.$ | (1) | magnetic field. | |-----|--------------------| | | forms of radiation | | | explanation | | | | | | | | | [2] | (ii) A β -particle is emitted when the radioactive isotope iodine-131 decays into an isotope of xenon. Use the correct nuclide notation to complete the decay equation for iodine-131. $$^{131}_{53}I \rightarrow ^{131}_{100}Xe + ^{100}_{100}\beta$$ [Total: 12] 35 #### **BLANK PAGE** Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge. | ß | |----------| | = | | ā | | ~ | | Ξ. | | <u>ө</u> | | ш | | _ | | ō | | 4 | | <u>e</u> | | 0 | | a | | _ | | ပ | | 0 | | ŏ | | .≃ | | 9 | | ñ | | - | | ခ | | | | _ | | | _ | | ď | E | | a) | | | | ç | | | uc. | | <i>a</i> | Ę _ | | _ | <u> </u> | | | | |-------|----|---|---|---------------|---------------|--------------|------------------------------|-----|----|------------------|----|----------|-----------------|----|----------|------------------|-------|-------------|-----------------|--------|-----------|--------------------| | | | 2 | Ĭ | heliu
4 | 10 | ž | neo
20 | 181 | ₹ | argon
40 | 36 | <u>∠</u> | krypt
84 | 54 | × | xenc
13, | 98 | 쬬 | rado | | | | | | =/ | | | | 6 | ш | fluorine
19 | 17 | Cl | chlorine
35.5 | 35 | Ŗ | bromine
80 | 53 | Ι | iodine
127 | 82 | Ą | astatine
- | | | | | | IΛ | | | | 80 | 0 | oxygen
16 | 16 | ഗ | sulfur
32 | 34 | Se | selenium
79 | 52 | <u>e</u> | tellurium
128 | 84 | Ъо | polonium
– | 116 | ^ | livermorium
- | | | > | | | | 7 | Z | nitrogen
14 | 15 | ۵ | phosphorus
31 | 33 | As | arsenic
75 | 51 | Sp | antimony
122 | 83 | :E | bismuth
209 | | | | | | 2 | | | | 9 | O | carbon
12 | 14 | S | silicon
28 | 32 | Ge | germanium
73 | 20 | Sn | tin
119 | 82 | Po | lead
207 | 114 | Ρl | flerovium | | | ≡ | | | | 2 | Δ | boron
11 | 13 | Αl | aluminium
27 | 31 | Ga | gallium
70 | 49 | In | indium
115 | 18 | 11 | thallium
204 | | | | | | | | | | | | | | | | 30 | Zu | zinc
65 | 48 | g | cadmium
112 | 80 | Hg | mercury
201 | 112 | ပ် | copernicium | | | | | | | | | | | | | 29 | Cn | copper
64 | 47 | Ag | silver
108 | 62 | Au | gold
197 | 111 | Rg | roentgenium
- | | dn | | | | | | | | | | | 28 | ï | nickel
59 | 46 | Pd | palladium
106 | 78 | Ŧ | platinum
195 | 110 | Ds | darmstadtium
- | | Group | | | | | | | | | | | 27 | ဝိ | cobalt
59 | 45 | R | rhodium
103 | 77 | Ľ | iridium
192 | 109 | Μţ | meitnerium
- | | | | - | I | hydrogen
1 | | | | | | | 26 | Fe | iron
56 | 44 | Ru | ruthenium
101 | 92 | SO | osmium
190 | 108 | Hs | hassium | | | | | | | _ | | | | | | 25 | Mn | manganese
55 | 43 | ည | technetium
- | 75 | Re | rhenium
186 | 107 | Bh | bohrium
— | | | | | | | | 0 | V. | | | | 24 | ပ် | chromium
52 | 42 | Mo | molybdenum
96 | 74 | > | tungsten
184 | 106 | Sg | seaborgium
- | | | | | | Key | atomic number | atomic symbo | name
relative atomic mass | | | | 23 | > | vanadium
51 | 41 | QN | niobium
93 | 73 | <u>Б</u> | tantalum
181 | 105 | Op | dubnium | | | | | | | a | atol | <u> </u> | | | | 22 | j= | titanium
48 | 40 | Zr | zirconium
91 | 72 | Ξ | hafnium
178 | 104 | Ŗ | rutherfordium
- | | | | | | | | | | _ | | | 21 | Sc | scandium
45 | 39 | > | yttrium
89 | 57–71 | lanthanoids | | 89–103 | actinoids | | | | = | | | | 4 | Be | beryllium
9 | 12 | Mg | magnesium
24 | 20 | Ca | calcium
40 | 38 | Š | strontium
88 | 56 | Ba | barium
137 | 88 | Ra | radium | | | _ | | | | 8 | := | lithium
7 | 1 | Na | sodium
23 | 19 | × | potassium
39 | 37 | Rb | rubidium
85 | 55 | S | caesium
133 | 87 | ъ́ | francium | | 71 | ŋ | lutetium | 175 | 103 | ۲ | lawrencium | ı | |----|----|--------------|-----|-----|-----------|--------------|-----| | 70 | Υp | ytterbium | 173 | 102 | 8 | nobelium | ı | | 69 | E | thulium | 169 | 101 | Md | mendelevium | ı | | 89 | Щ | erbium | 167 | 100 | Fm | fermium | ı | | 29 | 운 | holmium | 165 | 66 | Es | einsteinium | ı | | 99 | Ò | dysprosium | 163 | 86 | ₽ | californium | ı | | 65 | Р | terbium | 159 | 26 | Ř | berkelium | 1 | | 64 | Вd | gadolinium | 157 | 96 | Cm | curium | ı | | 63 | Eu | europium | 152 | 95 | Am | americium | ı | | 62 | Sm | samarium | 150 | 94 | Pu | plutonium | 1 | | 61 | Pm | promethium | 1 | 93 | ď | neptunium | ı | | 09 | ρN | neodymium | 144 | 92 | \supset | uranium | 238 | | 59 | Ą | praseodymium | 141 | 91 | Pa | protactinium | 231 | | 58 | Ce | cerium | 140 | 06 | Ч | thorium | 232 | | 22 | Га | lanthanum | 139 | 88 | Ac | actinium | 1 | lanthanoids actinoids The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). © UCLES 2022